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Figure 1: Scene simpli�cation for bionic vision. A) Visual neuroprostheses (bionic eyes) electrically stimulate neurons in the
visual system to restore a rudimentary form of vision to people living with incurable blindness (inset). To create meaningful
arti�cial vision, the visual scene is simpli�ed by extracting semantic edges and estimating relative depth before it is displayed,
here illustrated on an indoor scene from the MS-COCO database. Semantic edges and depth cues may be visualized either
independently (EdgesOnly and DepthOnly mode) or together (EdgesAndDepth). Alternatively, users may prefer the ability to
�exibly switch between edges and depth cues (EdgesOrDepth). B) As a proof of concept, we used a neurobiologically inspired
computational model to generate realistic predictions of simulated prosthetic vision, and asked sighted subjects (i.e., virtual
patients) to avoid obstacles and select objects in an immersive virtual reality environment.

ABSTRACT
Visual neuroprostheses (bionic eyes) have the potential to treat de-
generative eye diseases that often result in low vision or complete
blindness. These devices rely on an external camera to capture the
visual scene, which is then translated frame-by-frame into an elec-
trical stimulation pattern that is sent to the implant in the eye. To
highlight more meaningful information in the scene, recent stud-
ies have tested the e�ectiveness of deep-learning based computer
vision techniques, such as depth estimation to highlight nearby
obstacles (DepthOnly mode) and semantic edge detection to out-
line important objects in the scene (EdgesOnly mode). However,
nobody has attempted to combine the two, either by presenting
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them together (EdgesAndDepth) or by giving the user the ability to
�exibly switch between them (EdgesOrDepth). Here, we used a neu-
robiologically inspired model of simulated prosthetic vision (SPV)
in an immersive virtual reality (VR) environment to test the relative
importance of semantic edges and relative depth cues to support
the ability to avoid obstacles and identify objects. We found that
participants were signi�cantly better at avoiding obstacles using
depth-based cues as opposed to relying on edge information alone,
and that roughly half the participants preferred the �exibility to
switch between modes (EdgesOrDepth). This study highlights the
relative importance of depth cues for SPV mobility and is an impor-
tant �rst step towards a visual neuroprosthesis that uses computer
vision to improve a user’s scene understanding.

CCS CONCEPTS
•Human-centered computing! Accessibility technologies;
Virtual reality; Empirical studies in visualization.
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1 INTRODUCTION
By the year 2050, roughly 114.6 million people will be living with
incurable blindness [8]. Although some individuals can be treated
with surgery or medication, there are no e�ective treatments for
many people blinded by severe degeneration or damage to the
retina, the optic nerve, or cortex. In such cases, an electronic vi-
sual prosthesis (bionic eye) may be the only option [16] (Fig. 1A)
Analogous to cochlear implants, these devices electrically stimulate
neurons in the early visual system to elicit neuronal responses that
the brain interprets as visual percepts (phosphenes).

Current devices generally provide users with an improved ability
to localize high-contrast objects and perform basic orientation &
mobility tasks [2], but are not yet able to match the acuity of natural
vision. Most current prostheses provide a very limited �eld of view
(FOV); for example, the arti�cial vision generated by Argus II [26],
the most widely adopted retinal implant thus far, is restricted to
roughly 10 ⇥ 20 degrees of visual angle. This forces users to scan
the environment with strategic head movements while attempting
to piece together the information [14]. In addition, the limited
number of electrodes (60 in Argus II) severely limits the number of
independent phosphenes that the device can generate [7].

Consequently, researchers have suggested ways to simplify the
visual scene before it is displayed using image processing and com-
puter vision. One popular approach is to estimate relative depth in
the scene [17, 27] and then make phosphenes appear brighter the
closer they are to the observer, in order to highlight nearby obsta-
cles. Here we refer to this method of substituting depth for intensity
as DepthOnly mode (Fig. 1A). Another line of research suggests to
extract semantic and structural edges instead [32, 33] (EdgesOnly
mode), in order to give the user a sense of where important objects
are in the scene.

However, nobody has studied how to best combine these two
seemingly complementary sources of visual information. A straight-
forward approach would be to visualize both edge and depth cues
at the same time (EdgesAndDepth). However, we hypothesized that
users might instead prefer the ability to �exibly switch between
the two (EdgesOrDepth). To assess the relative importance of depth
and edge information, a side-by-side comparison is needed.

Due to the unique requirements of working with bionic eye re-
cipients (e.g., constant assistance, increased setup time, travel cost),
experimentation with di�erent encoding methods remains challeng-
ing and expensive. Instead, embedding models of simulated pros-
thetic vision (SPV) in immersive virtual reality (VR) allows sighted
subjects to act as virtual patients by “seeing” through the eyes of the
patient, taking into account their head and eye movements as they
explore an immersive virtual environment [21, 31, 35, 38]. This can
speed up the development process by allowing researchers to test
theoretical predictions in high-throughput experiments, the best of
which can be validated and improved upon in an iterative process
with the bionic eye recipient in the loop [22].

To this end, we make the following contributions:
i. We embed a psychophysically validated SPV model [6] in VR to
allow sighted participants to act as virtual bionic eye patients
in an immersive virtual environment.

ii. We explore the relative importance of di�erent scene simpli�-
cation strategies based on depth estimation [17] and semantic
edge detection [33] as a preprocessing strategy for bionic vision
(Fig. 1A).

iii. We systematically evaluate the ability of these strategies to
support obstacle avoidance and object identi�cation (Fig. 1B)
with a user study in immersive VR.
In sum, this is the �rst study to compare the relative importance

of depth cues and semantic edges for bionic vision and an essential
�rst towards a bionic eye that uses computer vision to improve a
user’s scene understanding.

2 BACKGROUND
Retinal implants are currently the only FDA-approved technology
to treat blinding degenerative diseases such as retinitis pigmentosa
(RP) and age-related macular degeneration (ARMD). Most current
devices acquire visual input via an external camera and perform
edge extraction or contrast enhancement via an external video pro-
cessing unit (VPU), before sending the signal through wireless coils
to a microstimulator implanted in the eye or the brain (see Fig. 1A).
This device receives the information, decodes it, and stimulates
the visual system with electrical current. Two devices are already
approved for commercial use: Argus II (60 electrodes arranged in a
6⇥10 grid, Second SightMedical Products, Inc., [26]) and Alpha-IMS
(1500 electrodes, Retina Implant AG, [34]). In addition, PRIMA (378
electrodes, Pixium Vision, has started clinical trials, with others to
follow shortly [3, 15].

A common misconception is that each electrode in the grid can
be thought of as a “pixel” in an image [11, 12, 25, 29, 32], and most
retinal implants linearly translate the grayscale value of a pixel
in each video frame to a current amplitude of the corresponding
electrode in the array [26]. This is known as the scoreboard model,
which implies that creating a complex visual scene can be accom-
plished simply by using the right combination of pixels, analogous
to the images projected on the light bulb arrays of some sports
stadium scoreboards [13]. On the contrary, recent work suggests
that phosphenes vary in shape and size, and di�er substantially
across subjects and electrodes [6, 14].

Despite their potential to restore vision to people living with in-
curable blindness, the number of bionic eye users in the world is still
relatively small (⇠ 500 retinal prostheses implanted to date). To in-
vestigate functional recovery and experiment with di�erent implant
designs, researchers have therefore been developing VR prototypes
that rely on SPV. The classical method relies on sighted subjects
wearing a VR headset, who are then deprived of natural viewing
and only perceive phosphenes displayed in a head-mounted display
(HMD). This viewing mode has been termed transformative reality
[25] (as opposed to altered reality typically used to describe low
vision simulations [4]), which allows sighted users to “see” through
the eyes of the bionic eye recipient, taking into account their head
and/or eye movements as they explore a virtual environment [22].
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However, becausemost SPV studies rely on the scoreboardmodel
[11, 12, 25, 29, 32], it is unclear how their �ndings would translate
to real bionic eye recipients. Only a handful of studies have in-
corporated a great amount of neurophysiological detail into their
setup [20, 21, 35, 37, 38], only three of which relied on an estab-
lished and psychophysically validated model of SPV [21, 35, 38].
In addition, being able to move around as one would in real life
has shown to signi�cantly increase the level of immersion a user
experiences [28]. However, the level of immersion o�ered by most
SPV studies is relatively low, as stimuli are often presented on
a screen [38, 39]. In contrast, most current prostheses provide a
very limited FOV (e.g., Argus II: 10 ⇥ 20 degrees of visual angle),
which requires users to scan the environment with strategic head
movements while trying to piece together the information [14]. Fur-
thermore, Argus II does not take into account the eye movements
of the user when updating the visual scene, which can be disori-
enting for the user. Ignoring these human-computer interaction
(HCI) aspects of bionic vision can result in unrealistic predictions
of prosthetic performance, sometimes even exceeding theoretical
limits for visual acuity (as pointed out by [10]).

3 RELATEDWORK
Most retinal implants are equipped with an external VPU that is
capable of applying simple image processing techniques to the video
feed in real time. In the near future, these techniques may include
deep learning–based algorithms aimed at improving a patient’s
scene understanding [5].

Based on this premise, researchers have developed various image
optimization strategies, and assessed their performance by having
sighted observers (i.e., virtual patients) conduct daily visual tasks
under SPV [1, 9, 12, 23, 27, 36]. These simulations allow awide range
of computer vision systems to be developed and tested without
requiring implanted devices.

Current retinal prostheses are implanted in only one eye, and
thus are unable to convey binocular depth cues. Previous work has
therefore explored the possibility of obtaining depth information
through additional peripherals, such as an RGB-D sensor, and stud-
ied behavioral performance of virtual patients typically navigating
an obstacle course under SPV. For example, Ref. [29] used depth
cues to generate a simpli�ed representation of the ground to indi-
cate the free space within which virtual patients could safely walk
around, whereas Ref. [17] used deep neural networks to estimate
per-pixel relative depth and then substituted depth for intensity.
Depth cues were also shown to help avoid nearby obstacles that are
notoriously hard to detect with other computer vision algorithms,
such as branches hanging from a tree [24]. Ref. [27] used depth
to increase the contrast of object boundaries and showed that this
method reduced the number of collisions with ground obstacles.
In addition, retinal prosthesis patients were shown to bene�t from
distance information provided by a thermal sensor when trying to
avoid nearby obstacles and people [30].

Recently, with the development of deep learning in computer
vision, semantic segmentation algorithms have become unprece-
dentedly e�ective. This can be used as another method to reduce
visual clutter in prosthetic vision, be it in outdoor scenes [19] or

indoor scenes [32]. The latter study combined semantic and struc-
tural image segmentation to build a schematic representation of
indoor environments, which was then shown to improve object
and room identi�cation in a SPV task [32]. Semantic segmentation
has been applied to simplify both the outdoor scenes [19] and the
indoor scenes [32] for retinal prostheses.

However, since the above algorithms were developed in isolation
and tested on di�erent behavioral tasks, a side-by-side compari-
son of their ability to aid scene understanding is still lacking. A
notable exception is Ref. [17], which compared a number of scene
simpli�cation strategies that rely on depth extraction, semantic
segmentation, and visual saliency on a single task. However, their
study was limited to sighted participants viewing SPV videos on a
screen, and thus did not account for the FOV restrictions that are
common with current implants.

To address these challenges, we used a neurobiologically inspired
computational model of bionic vision [6] to generate realistic pre-
dictions of SPV, and combined it with scene simpli�cation strategies
based on depth estimation [17] and semantic edge detection [33].
To allow for a fair comparison between algorithms, we asked vir-
tual patients to avoid obstacles and identify objects in a number of
immersive virtual environments.

4 METHODS
4.1 Virtual Patients
To simulate a bionic eye patient, we developed SPV simulations in
Unity that were streamed in real time to a wireless head-mounted
VR headset (HTC VIVE Pro Eye with wireless adapter, HTC Corpo-
ration). We followed the procedure outlined in Fig. 1A to simulate
di�erent scene simpli�cation strategies and tested them on an obsta-
cle avoidance and object selection task (Fig. 1B). All our simulations
were run on an Intel i9-9900k processor (C# code) and an NVIDIA
RTX 2070 Super GPU with 16GB of DDR4 memory (shader code).
The entire SPV work�ow was thus as follows:

i. Image acquisition: Utilize Unity’s virtual camera to acquire
the scene at roughly 90 frames per second and downscale to
a target texture of 86 ⇥ 86 pixels.

ii. Scene simpli�cation: Extract semantic edges and/or depth
cues to simulate di�erent scene simpli�cation strategies (see
Section 4.5).

iii. Electrode activation: Determine electrode activation based
on the visual input as well as the placement of the simulated
retinal implant. In the current study, a 3⇥3Gaussian blur was
applied to the preprocessed image to average the grayscale
values around each electrode’s location in the visual �eld.
This gray level was then interpreted as a current amplitude
delivered to a particular electrode in the array.

iv. Phosphene model: Use Unity shaders to convert electrode
activation to a visual scene in real time (see Section 4.4).

v. Phosphene rendering: Render the elicited phosphenes in the
HMD of the VR system.

4.2 Participants
We recruited 18 participants with normal or corrected-to-normal
vision from the Anonymous Participant Pool at Anonymous Institu-
tion to act as virtual patients in our experiment. Participants ranged
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Figure 2: Room layouts. Participants started in the center along the bottom wall. Participants were instructed to walk towards
the other end of the room while avoiding obstacles. At the end of the room, there was either one table with three objects on it,
or three tables with one object on each. Participants had to identify the medium-sized cube located one on of the tables.

from 18 � 20 in age, with 6 participants identifying as male and 12
identifying as female. Of these participants, 4 had never used VR
before, 12 had used VR 1�5 times before, 1 had used it 10�20 times,
and 1 had used it 20+ times. Potential participants were excluded if
they reported that they were prone to cybersickness. The study was
approved by Anonymous Institution’s Institutional Review Board.

4.3 Rooms
Participants were asked to navigate six di�erent virtual rooms that
were �lled with 3-7 obstacles to avoid and a target object to select
among distractor objects (Fig. 2). Participants always started along
the bottom wall and were instructed to walk towards the other end
of the room while avoiding obstacles. Upon collision with an object,
a “thud” sound was played through the VIVE headphones.

Once they had passed all obstacles, a “chime” sound was played
through the VIVE headphones to indicate the end of the obstacle
avoidance portion of the task. Participants then had to navigate to
one of three tables and identify a medium-sized cube located on it
(Fig. 3). Each room had either one table with three objects on it, or
three tables with one object each.While the arrangements of objects
was pseudo-randomized on each trial (consisting either of a sphere,
a cylinder, and a medium cube; or a small cube, a medium cube, and
a large cube), participants always had to select the medium cube.

4.4 Simulated Prosthetic Vision
To generate realistic simulations of phosphene appearance, we
adapted code from the VR-SPV open-source toolbox [21]. This tool-
box provides a C#/shader implementation of the pyschophysically
validated axon map model [6] that describes phosphenes using

two shape parameters, d (specifying phosphene size) and _ (de-
scribing phosphene elongation). We chose d = 300 and _ = 550
for our simulations, which is roughly in the middle of the range
of values reported by Argus II users [6]. To support the real-time
simulation of a 20 ⇥ 15 electrode array implanted in the retina, we
pre-calculated an initial mapping of each electrode’s e�ects on the
scene before starting the experiment.

4.5 Modes
We considered four di�erent scene simpli�cation modes (Fig. 4):

i. EdgesOnly: To simulate semantic and structural edge segmen-
tation [33], we drew white outlines around the ground-truth
object boundaries of the obstacles, tables, and objects in the
room (Fig. 4, top). In addition, we highlighted the edges of the
room to give participants an indication of the room layout.

ii. DepthOnly: To simulate depth to intensity substitution [17],
we estimated the ground-truth depth for each pixel on the
Unity screen using raycasting. Inverse depth was then lin-
early mapped to phosphene brightness, so that close objects
appeared the brightest, and the far away wall was black
(Fig. 4, middle).

iii. EdgesAndDepth: This mode visualized both edge and depth
information at the same time (Fig. 4, bottom).

iv. EdgesOrDepth: In this mode, participants randomly started in
either EdgesOnly or DepthOnly mode and were able to toggle
between modes via press of a button on the VIVE controller.

4.6 Procedure
To prevent learning e�ects, the order in which the modes were
presented and the order in which the rooms were presented was
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Figure 3: Example views of the table with di�erent objects
on it. The correct object to identify was always the medium-
sized cube (indicated with a white dashed circle) among
two distractor objects. The arrangement of the objects was
pseudo-randomized on each trial. Users had to con�rm their
selection by pressing a button on the VIVE controllers.

pseudo-randomized across participants. To reduce cognitive load
and context-switching, all rooms for a particular mode were pre-
sented in a block. This allowed participants to get comfortable with
one mode at a time. Participants saw each combination of room
and mode only once.

Before the start of each mode, participants were allowed to ex-
plore a tutorial room (not part of Rooms A–F) that contained a
single obstacle to avoid and a medium-sized cube on a table with-
out distractor objects. Participants were free to navigate the room
for as long as they wanted, until they felt comfortable with the
SPV mode. When they indicated that they were ready to start the
experiment, they had to grab the medium-sized cube o� the table
and con�rm their selection with a button press. They were then
given 30 seconds to walk back to the starting position, indicated by
a red circle on the �oor. At this point the experiment started with a
pseudo-randomly selected room.

During the experiment, participants were given a maximum of
four minutes per trial. A trial was concluded by selecting an object
from one of the tables in the room. If participants exceeded the
time limit, the trial ended automatically, SPV was turned o�, and
the participant was given 30 seconds to walk back to the starting
position, before the next trial started.

In EdgesOrDepth mode, participants were allowed to toggle be-
tween EdgesOnly and DepthOnly modes as often as they wanted.
Each trial started in the mode that was last active during the last
trial (or for Trial 1: whichever was last active in the tutorial room).

Figure 4: SPV modes used for scene simpli�cation. Top: In
EdgesOnly mode, only semantic and structural edges are
visualized. Middle: In DepthOnly mode, per-pixel ground-
truth depth is inverted and linearly translated to grayscale
level. Bo�om: In EdgesAndDepth both edges and depth are vi-
sualized. A fourth mode, EdgesOrDepth, gave users the abil-
ity to toggle between EdgesOnly and DepthOnly modes by
pressing a button on the VIVE controller.

This way, if participants preferred one mode over the other, they
could just stay on that mode without having to constantly switch
back and forth between trials.

4.7 Data Collection and Analysis
During the whole experiment, we recorded participant position
(sampled every 0.5 seconds), time and place of obstacle collisions,
and object selection. Upon collision with an obstacle, we applied
a 3 second timeout window so that prolonged collisions with the
same object was only counted once.

We considered the number of collisions (the fewer the better) and
time taken (the shorter the better) as the main metrics to quantify
obstacle avoidance performance. The obstacle avoidance part of the
task ended as soon as participants entered the top third of the room.
From that time forward, participants were considered to be in the
object selection part of the task, even if they accidentally crossed
the line back into the obstacle avoidance portion of the room.

We considered the fraction of correctly selected objects (accu-
racy; the higher the better) and time taken (the shorter the better) as
the main metrics to quantify object selection performance. A trial
ended as soon as participants selected an object. Trials where time
ran out before a selection could be made were counted as incorrect
object selections.

To determine whether performance was signi�cantly di�erent
across modes and rooms, we ran a regression analysis for each
metric mentioned above using the Ordinary Least Squares (OLS)
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Figure 5: Obstacle avoidance (OA) performance, measured by success rate (i.e., the number of trials with zero collisions, Panel
A) and time taken (Panel C), and object selection (OS) performance, measured by accuracy (i.e., the fraction of trials where the
correct object was selected, Panel B), and time taken (Panel D). The dashed line in Panel B indicates chance performance (33 %).
Vertical bars are the standard error of the mean (SEM). Statistical signi�cance was determined using paired C-tests, corrected
for multiple testing using the Holm-Sidak method (*: ? < .05).

model in the statsmodel Python module as"4CA82 ⇠ ⇠ (">34) +
⇠ ('>><). We also considered gender and VR experience as fac-
tors a�ecting performance, but found no statistically signi�cant
di�erences and thus subsequently removed these variables from
the model. ?-values were calculated using paired C-tests of the OLS
model, which corrects for multiple testing using the Holm-Sidak
method.

5 RESULTS
5.1 Obstacle Avoidance
Fig. 5 summarizes the obstacle avoidance (OA) and object selec-
tion (OS) performance of all participants for the di�erent scene
simpli�cation modes.

Participants performed the OA portion of the task most success-
fully using the EdgesAndDepth mode, completing on average 89.8 %
of trials without colliding (“success rate”, Fig. 5A). However, this
was not signi�cantly better than with the DepthOnly (87.9 %) and
EdgesOrDepth modes (87.0 %; C-test ? > 0.05, corrected for multiple
comparisons with the Holm-Sidak method). On the other hand, par-
ticipants performed worst with the EdgesOnly mode, as evidenced
by a signi�cantly lower success rate (64.8 %) and among the longest
times taken (25 s, Fig. 5C). Participants were signi�cantly faster
using DepthOnly (17 s) than they were with EdgesOrDepth (22 s)
and EdgesAndDepth (25 s; Fig. 5C).

5.2 Object Selection
Participants performed the OS portion of the task most successfully
using the EdgesOrDepth mode, on average locating and selecting
the correct object in 54.6 % of trials (Fig. 5B). However, this was not
signi�cantly better than with the EdgesOnly (46.3 %) and DepthOnly
modes (50.9 %). Performance with the EdgesAndDepthmode (40.7 %)
was only slightly better than chance (33 %).

All participants took approximately 40 s to walk towards the
correct table and select the correct object, no matter which scene
simpli�cation mode was used (Fig. 5D). Since the location of the
correct object was pseudo-randomized on each trial, it is possible

that most of the time for the OS portion of the task was spent simply
walking back and forth between the three tables.

5.3 Participant Paths
The paths that participants took are summarized in Fig. 6, showing a
birds-eye view of the six di�erent rooms. Here, each line represents
the path of a participant, with colors getting more saturated as time
progresses, and collisions indicated by black crosses.

The poor OA performance of the EdgesOnly mode �rst reported
in Fig. 5 can also be appreciated here, with participants causing
more collisions compared to the other modes across all rooms. This
is especially evident in Room F: Even though participants attempted
to avoid the obstacle maze by moving in a slalom fashion, there are
only two obstacles that never led to collisions.

It is interesting to note that participants seemed to explore Room
A the most, with some participants accidentally walking away
from the table in the top-left corner of the room and returning to
the OA portion of the task. On the other hand, most participants
walked mostly straight ahead in Room B (except in EdgesOrDepth
mode) and Room E, thus avoiding most obstacles, although most
participants still collided with the obstacle that was closest to the
starting position. Room F was by far the most challenging, leading
to a large number of collisions in all four modes.

5.4 Relative Importance of Depth vs. Edges
One potential indicator of the relative importance of depth and edge
cues was EdgesOrDepth mode: here participants had the ability to
�exibly switch between EdgesOnly and DepthOnly information at
the push of a button. Participants were free to toggle modes as often
as they saw �t.

We recorded both the number of times that participants toggled
modes as well as the amount of time spent in each mode. The results
are shown in Fig. 7. To our surprise, participants spent most of their
time in DepthOnly mode (Fig. 7, top), both during the OA as well as
the OS portion of the task.
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Figure 6: Birds-eye view of paths taken by all subjects in the di�erent rooms (columns) using the di�erent scene simpli�cation
strategies (rows). Color of paths gets more saturated as time moves on. Collisions are indicated with a black + sign. Circles
indicate the location of the obstacles, and rectangles are the table. The task switched fromobstacle avoidance to object selection
as soon as the participant crossed the (to them invisible) horizontal dashed line.

In addition, most participants did not often switch between
modes ((Fig. 7, bottom). The experiment was set up so that each trial
started on the mode that was last active (either during the preceding
trial or in the tutorial room), so that participants who preferred one
mode over the other would not have to constantly switch back and
forth. During the OA portion of the task, participants tended to
toggle modes either never (perhaps because the trial started in their
preferred mode), once (perhaps because they trial started in their
nonpreferred mode), or twice (perhaps to brie�y view the other
mode, but then promptly switch back to the preferred one).

The only exception was Room A, where participants tended to
switch modes much more often. Since the orders of the rooms was
pseudo-randomized, it is not entirely clear why Room A would
prompt participants to switch modes more often than other rooms.

5.5 User Preferences
Upon completion of the experiment, we asked participants which
mode they preferred for the OA portion of the task, the OS portion
of the task, and overall (Fig. 8).

Consistent with Fig. 5A, participants preferred DepthOnly and
EdgesOrDepth to avoid obstacles; j2 (1,# = 18) = 8.22, ? < 0.05.
However, EdgesAndDepth did also result in strong OA performance,
yet was only preferred by two out of 18 participants. Most partici-
pants preferred the ability to switch between depth and edge cues
by means of the EdgesOrDepth mode.

When it came to selecting objects, user preferences were mixed
(Fig. 8, center) and not signi�cantly di�erence from a uniform ran-
dom distribution: j2 (1,# = 18) = 0.667, ? = 0.88. This is consistent
with the somewhat lackluster performance of participants in the
object selection portion of the task (Fig. 5B), suggesting that none
of the tested modes may be ideal for object recognition.

Lastly, overall preference mirrored the OA result, with most
participants preferring DepthOnly and EdgesOrDepth mode (Fig. 8,
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Figure 7: EdgesOrDepth: Fraction of time spent on eachmode
(top) and number of mode toggles (bo�om) for each room,
for the obstacle avoidance portion of the task (le�) and the
object selection portion of the task (right).

right). However, this result was not signi�cantly di�erent from a
random uniform distribution, although it approached signi�cance
(j2 (1,# = 18) = 7.33, ? = 0.06). Notably, none of the subjects
preferred EdgesOnly mode overall, and only four subjects preferred
EdgesAndDepth mode. The majority of participants was split be-
tween being comfortable wusingithDepthOnlymode and preferring
the �exibility to switch between modes using EdgesOrDepth mode
(even thoughmost time in EdgesOrDepthwas spent looking at depth
cues).

Overall these results further corroborate the relative importance
of depth cues for both obstacle avoidance and object identi�cation.

6 DISCUSSION
6.1 Relative Importance of Depth Cues and

Semantic Edges for Bionic Vision
Here we asked sighted participants to act as virtual bionic eye re-
cipients by navigating virtual indoor environments using simulated
prosthetic vision. To the best of our knowledge, this is the �rst
study that directly compares the relative importance of depth cues
and semantic edges for bionic vision.

As expected, we found that participants were signi�cantly better
at avoiding obstacles using depth-based methods as opposed to rely-
ing on edge information alone (Fig. 5A). These results are consistent
with previous studies highlighting the importance of highlighting
nearby obstacles for orientation & mobility tasks [24, 27]. How-
ever, the exact way in which depth cues were presented seemed to
carry little importance, as evidenced by similar performance of the

DepthOnly, EdgesAndDepth, and EdgesOrDepth modes. Neverthe-
less, it is interesting to note that participants completed the obstacle
avoidance portion of the task the fastest using DepthOnly mode
(Fig. 5C), even though EdgesAndDepth provided the same amount
of depth cues at all times.

Theoretically, participants should have performed the same (at
least asymptotically) with the EdgesOrDepth mode, as it provides
at least the same amount of information as DepthOnly mode. In its
original conception, EdgesOrDepth mode was supposed to provide
all the functionality of the individual modes (i.e., DepthOnly and
EdgesOnly) while giving the user the power and �exibility to choose
whichever mode they deem best for a particular situation. Instead,
it is possible that the ability to switch added unnecessary overhead
in terms of time taken to complete the task and opened up the
possibility that users may perform the task in a suboptimal mode.
From an HCI perspective, this is an important insight to consider
for future designs of bionic eyes that rely on computer vision for
scene simpli�cation [5].

6.2 Depth and Semantic Edges May Not Be
Su�cient for Object Recognition

Depth cues were also important for object selection (Fig. 5B), with
participants performing best using the DepthOnly and EdgesOr-
Depth modes. However, performance was more lackluster as com-
pared to the obstacle avoidance portion of the task. Participants
performed near chance levels using EdgesAndDepth, and were only
slightly better with the other three modes. Only DepthOnly and
EdgesOrDepth were signi�cantly better than EdgesAndDepth, and
time taken to complete this subtask was similar across modes.

Overall these results suggest that presenting both edge and depth
cues at once may hinder participants’ ability to segregate important
objects from the background. Yet none of the tested modes seem
to provide su�cient information for participants to excel at this
portion of the task.

6.3 Users Prefer Depth Information Over Edges
The relative importance of depth information was further corrobo-
rated by Fig. 7, which indicates that when participants were given
a choice between edges and depth (i.e., in EdgesOrDepth mode),
they largely preferred to navigate the room by relying on depth
information alone.

In obstacle avoidance and overall, most participants preferred
DepthOnly and EdgesOrDepth over the other two modes (Fig. 8),
but opinions were largely split: Approximately half of participants
preferred the �exibility of switching between edges and depth,
whereas the other half was content with DepthOnly mode. The
lackluster object selection performance is also evidenced by the
user preference chart, which was not signi�cantly di�erent from
random.

Overall these results suggest that while depth information seems
to be the most bene�cial for obstacle avoidance and object selection,
there may not be one scene simpli�cation made that is preferred
by the majority of bionic eye recipients.
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Figure 8: Reported user preferences for the di�erent SPV modes.

6.4 Limitations and Future Work
Although the present study e�ectively uses immersive VR to address
previously unanswered questions about SPV, there are a number
of limitations that should be addressed in future work as outlined
below.

First, it is important to point out that the study was performed
on sighted undergraduate students readily available at Anonymous
Institution. Their age, navigational a�ordances, and experience
with low vision may therefore be drastically di�erent from real
bionic eye recipients, who not only tend to be older (and proli�c
cane users), but also receive extensive vision rehabilitation training.

Second, we acknowledge that the navigating with simulated
prosthetic vision was a challenging task even for experienced users
of VR. Sometimes, as the experiment progressed into the later stages,
fatigued and frustrated participants would become increasingly
reckless and charge straight ahead through the obstacle course
(without any real-life consequences of a collision) or simply select
the �rst object they encountered. Therefore, a larger participant
pool might have been able to average out such behavior and reveal
more pronounced di�erences between the tested SPV modes.

Interestingly, we found vast individual di�erences in task per-
formance, which were not unlike those reported in the literature
[18]. Subjects who did well with one mode tended to do well across
all modes (data not shown), suggesting that some people were in-
herently better at adapting to prosthetic vision than others. Future
work should therefore zero in on the possible causes of these individ-
ual di�erences and compare them to real bionic eye users. Studying
these di�erences could identify training protocols to enhance the
ability of all device users.

7 CONCLUSION
In sum, this is the �rst study to compare the relative importance
of depth cues and semantic edges for bionic vision and constitutes
an essential �rst towards a bionic eye that uses computer vision to
improve a user’s scene understanding.
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