
Image Classification

Alex Rasla
UC Santa Barbara

alexrasla@ucsb.edu

1 Data

For this project, I used the CIFAR-10 [1] dataset
which consists of 60,000 32x32 images, split into
50,000 for training and 10,000 for testing. In or-
der to gain more diverse dataset/images and train
a model more robust model, I implemented a data
augmentation technique on this dataset that in-
cluded random horizontal flipping and random
cropping.

2 Libraries

In this project, I used Pytorch to create my CNN
and Torchvision to download and perform trans-
formations on the CIFAR-10 dataset. Within Py-
Torch, I used Conv2d layers to perform convolu-
tions, ReLU layers to ensure all values are >= 0,
BatchNormalization as a regularization technique,
and MaxPool2d layers to reduce the dimensions of
the image and extract the most important features.
I used the Torchvision library to download the
CIFAR-10 dataset and transform the images rather
than manually loading and processing the data ev-
erytime into my project. Lastly, I used NumPy
for basic array operations, matplotlib for plotting
metrics, and sklearn to generate a confusion matrix.

3 Models

To perform and experiment with different image
classification techniques, I first created a baseline
model to ensure I could achieve reasonable image
classification. This model consisted of 3 layers
of convolution followed by a “classification” layer.
Each of the convolutional layers had kernel sizes
of 3, maxpooling sizes of 2, and consisted of the
following sequential components: Conv2d, ReLU,
Conv2d, ReLU, and MaxPool2d; the final classifi-
cation layer consisted of the Flatten, Linear, ReLU,
Linear, ReLU, Linear sequential components, with
a final output vector size of 10. This model was

trained with a learning rate of 0.001, a batch size of
100, over 30 epochs, using the cross entropy loss
function.

Once I trained and produced reasonable results
for a simple model, I also decided to train a larger
model with the first and last layers consisting of
the convolutional layers described above, and 3 lay-
ers in between consisting of a sequential Conv2d,
ReLU, Conv2d, ReLU, Conv2d, ReLU, and Max-
Pool2d. This model was trained with the same
hyperparameters as the baseline one in order to be
able to compare them as accurately as possible.

4 Implementation Details

In order to train an image classification model using
my program, first connect to the Google Colab
GPU and clone my repository. Next, to edit the
model type and its hyperparameters, change the
values in the config.py. Finally, execute

!python3 ./ImageClassification/train.py

to train the image classification model specificied
in the MODEL variable in the Config class. Once
this model is trained, evaluation can be performed
by executing:

!python3 ./ImageClassification/eval.py
--model [path to model]

The evaluation is performed on the CIFAR-10 test-
set, and the program generates and saves a confu-
sion matrix, which is used to plot and analyze the
results using

!python3 ./ImageClassification/plot.py
--dir [path to model directory]

5 Results

Throughout this project, I trained two different
models, experimented with a variety of different hy-
perparameters, and tested out different regulariza-
tion and data augmentation techniques to achieve

https://colab.research.google.com/
https://github.com/alexrasla/ImageClassification.git


the most accurate model. In order to compare the
models, I used the most common evaluation tech-
niques for image classification models: a confu-
sion matrix. This matrix increments the index of
model’s output label (row) and the ground truth
label (column) in the confusion matrix for each
test image. Using this method, perfect accuracy is
represented by a diagonal matrix. However, more
notable metrics using this matrix are the overall
accuracy, the commission of error (false positive),
and the omission of error. The overall accuracy
is percentage of correct predictions, the commis-
sion of error is the percentage of images that are
assigned to a certain class that don’t belong to it
(overestimation), and the omission of error is the
percentage of images that belong to one class but
are classified by the model as other classes (under-
estimation). The equations below give a formula
for the errors given a row or column i.

Commission, i =

∑
Coli −Diagonali∑

Coli

Ommision, i =

∑
Rowi −Diagonali∑

Rowi

A table of the overall accuracy, training time per
epoch, and validation time per epoch for each
model I trained and experimented with is shown
in Table 1. The training and validation loss for the
best model (Model A) are shown in Figure 1, its
normalized confusion matrix is shown in Figure
2, and its error of commission and omission are
shown in Figure 3.

Contrary to my initial hypothesis, the smaller
model with fewer layers and convolutions had a
better overall accuracy as compared to the larger
model when trained with the same hyperparamters
and data. This was a novel realization for myself
because I always assumed larger models perform
better. However, after reading various research
papers, I found that this is in fact expected the
expected behavior in CNNs used for image classifi-
cation.

The best performing model I was able to train
achieved an overall accuracy of 0.8912, a final train-
ing loss of 0.127, a final validation loss of 0.441 as
shown in Figure 1, and a total training time of 23
minutes and 33 seconds. As we can see from the
confusion matrix in Figure 2, most of the model’s
classification accuracies lied above 0.89. From the
commision and omision bar graph in Figure 3, we
also notice that the two classes below this thresh-
old, cat and dog, seemed to be most difficult task

Overall Accuracy Train Validation
Model A 0.8912 42.42 5.04
Model B 0.8605 34.98 2.09
Model C 0.8378 91.26 5.29
Model D 0.7895 41.60 3.05
Model E 0.7773 98.42 5.03
Model F 0.7549 45.13 3.35
Model G 0.6612 83.38 5.17

Table 1: Model A: Small, Data Augmentation, Batch
Normalization; Model B: Small, 30 epochs, Data Aug-
mentation; Model C: Large, 30 epochs, Data Augmen-
tation; Model D: Small, 20 epochs, 3x3 Kernels; Model
E: Large, 20 epochs, 3x3 Kernels; Model F: Small, 40
epochs, 3x3 Kernels; Model G: Small, 20 epochs, 7x7
Kernels;. This figure shows the overall accuracy from
the confusion matrix for each trained model, along with
its average training and validation time in seconds per
epoch.

Figure 1: The training and validation loss plots for
Model A: Small, Data Augmentation, Batch Normaliza-
tion

for the model, and were often hard to differentiate
between themselves. In fact, 9% of the ommision
errors for each of these classes were caused by the
other. Nevertheless, the model performed very well
on the other classes, with half the classes above
90% accuracy.

6 Discussion

For my experimentation in this project, I imple-
mented two different models (one large, one small),
and analyzed the effect of different kernel sizes,
number of epochs, learning rate, data augmenta-
tion, and regularization techniques. In order to
perform this experimentation, I first trained the
smaller model that is described in the model sec-
tion. This model gave me insight into how accurate
a CNN can be without any hyperparameter tuning
or modifications. I trained this model for 20 epochs



Figure 2: The confusion matrix for Model A

Figure 3: The commission and omision of error for
Model A

with a learning rate of 0.001 and a kernel size of
3x3. This produced an overall accuracy of 0.7895
for the CIFAR-10 testset.

Once this smaller model generated reasonable
results, I decided to test whether or not a larger
model (Model E) with more layers and convolu-
tions would increase the performance and accuracy.
I trained the model with identical hyperparameters
in order to be able to most effectively compare the
smaller and larger model. Contrary to my hypoth-
esis, this did not perform better than its simpler
counterpart — it achieved an overall accuracy of
0.7773. Furthermore, this model took twice as
long to train and was 1GB in size (compared to
67MB for the small model) because of the number
of trainable parameters.

Because I noticed a slight decrease in perfor-
mance with the larger model (and a huge increase
in size), I decided to build upon and experiment
with the smaller model. I first experimented with a
kernel size of 7x7 (and a padding size of 3 so every
pixel can be processed). This model performed
noticeably worse than the smaller model with 3x3
kernels, decreasing the overall accuracy to 0.6612.
This is likely because the images in the CIFAR-10

dataset are only 32x32. Using a 7x7 kernel for con-
volutions for images this small makes it hard for
the model to extract important features and charac-
teristics; the features that differentiate the images
from each other and allow them to be classified
correctly are smaller and more detailed. In other
words, a smaller kernel size can better specify and
recognize a pixel’s relation to a classification rather
than a bigger kernel size which has a harder time
determining these details and relationships.

Next, I experimented with the number of epochs
and learning rate for the smaller model to see if
tuning these hyperparameters would improve per-
formance. In order to test this, I trained the smaller
model for 40 epochs with a learning rate of 0.0005.
This would run the data over the entire dataset
twice as much, but update the model’s weights by
half as much as the original model. Unfortunately,
changing these parameters also decreased the per-
formance again to an overall accuracy of 0.7549,
but maintained a similar train and validation time
per epoch. This is likely because the model overfit-
ted the training data, and thus performed poorly on
the testing and validation data. This was proven by
the diverging validation loss, as well as the poorer
overall accuracy.

My last attempt at improving the model itself
was to use regularization techniques since the
dataset is relatively small and they are proven to
improve many types of models for many types of
applications. I decided to focus on experiment-
ing with dropout layers and batch normalization.
Throughout my experimentation with a dropout of
0.15, I noticed that even one dropout layer in the
neural network prevented the model from converg-
ing at all. This was very surprising to me since I
thought regularization techniques can only improve
model performance, given they are not overused. I
suspect it failed to improve performance because
dropping convolution weights with a kernel size of
3 are already small enough that dropping additional
neurons is ineffective and prevents it from learn-
ing. On the other hand, batch normalization after
convolutional layers proved to increase the model’s
overall performance to by 0.03. This is likely be-
cause standardizing the output of the convolutional
layers prevents overfitting the model to the training
set.

Finally, I decided to experiment with data aug-
mentation. In order to perform data augmentation,
the CIFAR-10 images I used needed to be modified



in some way to diversify the dataset. To modify the
images, I used torchvision’s transform module to
randomly flip the images horizontally with p = 0.5
and randomly crop the image. These transforma-
tions ensured the model was able to find more ro-
bust features that represented a certain image classi-
fication rather than simply learning the dataset and
overfitting the data. As a result of this data augmen-
tation, the overall accuracy of the smaller model
improved by nearly 0.08, and the accuracy of the
large model improved nearly 0.05. This is a signifi-
cant improvement from the initial models, which
truly shows the impact that data augmentation has
on improving image classification.

Building upon the smaller model with the com-
bination of batch normalization and data augmen-
tation, I was able to improve the model’s overall
accuracy by 0.1, or 10%, to 0.8912.

References

[1] Alex Krizhevsky. Learning multiple layers of
features from tiny images. Tech. rep. 2009.


