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Abstract

For our class project, we decided to explore the effect of
using GNNs to predict the outcome of volleyball rallies.
Graphs have an exceptional ability of being able to take
into account various attributes into their nodes and link
together sets of the attributes through their edges. Thus,
in theory, a graph that has node attributes that consist of
characteristics of a rally such as the locations and types
of hits and sets with consecutive nodes linked together,
should be able to accurately predict the outcome of a rally.
In this project, we use a novel dataset and compare several
GNN models to baseline approaches for predicting the
outcome of a given volleyball rally. We found that for the
most part, the graph approaches do improve on baseline
approaches. Further, we were able to apply the same GNN
models for rally predictions to the task of predicting where
a setter will set the ball during a volleyball rally. This is
a completely novel task that was able to generate some
impressive results, as critiqued by volleyball experts.

1 Introduction

Millions of people everyday watch and play sports for
entertainment, profession, or exercise. There are many
different forms of sport, each of which are very compet-
itive in their own nature. Some allow physical contact,
some are played on dirt, some require pads, but all of
them have a very strict rule set and strategies that have
been established and fine-tuned over the lifespan of the
sport itself. Oftentimes, these strategies take advantage
of certain aspects of the game or the players such as the
speed, strength, height, location, etc. Using this intuition,
we believe an interesting research area to explore is being
able to collectively analyze these aspects of the game, and
create a model to predict outcomes and winners of parts
of the game.

With this topic in mind, we decided to explore the
aspects and predictable nature of volleyball. Volleyball
rallies have very discrete outcomes in terms of which
team wins a rally, how many touches a team can take
per “possession”, and what each touch represents in the
processes of getting the ball over the net (pass/receive,
set, hit). These different attributes can be organized and
filtered in a variety of ways in order to capture the cur-
rent states of the game. Another reason for exploring
volleyball is that there has not been a substantial amount

of research or exploration for it. Most of the research
that has gone into the field of using neural networks for
sports-related tasks has been for more popular sports such
as soccer or basketball [1], [6], [10], and mainly focus on
Computer Vision approaches. Thus, we decided to focus
on being able to predict the outcome of rallies and set
locations for volleyball.

In order to do this, we used a novel dataset collected,
filtered, and processed by Rhys that contains detailed
information for rallies from 10 NCAA Division 1 and pro-
fessional volleyball games from 2020 to 2021—including
Big West Conference matches and national team matches.
For our models, we decided to test the effectiveness of
being able to generate predictions using a few different
types of Graph Neural Network (GNN) models includ-
ing Graph Convolution Networks (GCN) [4] and Graph
Transformers [11]. Graphs are able to very efficiently and
effectively generate relationships between the different
nodes and the attributes within them, and create weighted
edges between different nodes within a themselves. Then
GNNSs are able to capture and understand the underly-
ing relationships within a graph. Thus, if given enough
relevant information regarding aspects of a rally and a
well-structured graph format for that information, GNN
models should theoretically be able to outperform other
types of models and approaches such as CNNs or RNNs.

2 Related Work

Previously, there have been several attempts that use neu-
ral networks for sports-related applications. Some of
these studies use GNNGs as their neural networks, and oth-
ers use CNNs or RNNs. The most similar study to ours
attempts to use Graph Neural Networks to also predict
sports outcomes [9]. This paper focuses on creating a
unique way of representing game-states using graph ap-
proaches. Through this technique, they are able to capture
inter-player relationships and local player relationships
that can otherwise not be taken into account when train-
ing a model. Further, the paper tests its player-specific
graph approach on American football and a popular es-
ports game, Counter-Strike. Through their methods, they
demonstrate a reduction in test set by 20% and 9% for
football and Counter-Strike respectively.

A similar work to [9] uses GNNs for predicting future
player locations and movements [10]. The work focuses
on multi-agent sports such as basketball and soccer and



takes advantage of both GNNs and Variational RNNs to
generate these future locations. Through these techniques,
they show that the statistical player distribution of their
generative model predictions outperform previous works.
Further, they also test their model using conditional pre-
diction to answer questions such as: How will the players
move if A passes to B instead of C?.

A comprehensive review of sports-related applications
that utilize machine learning techniques can be found
in [2], [3]. As we can see, there are a variety of avenues
where neural networks can be used for sports-related ap-
plications; however, there are few existing applications for
volleyball predictions, the most notable being [5], [7], [8].
None of these approaches for volleyball predictions take
advantage of graph based structures or GNNs.

3 Proposed Methods

In our experiments, we analyze two different applications
of GNNs on our dataset: predicting rally outcomes and
predicting set locations. These two applications involve
different graph structures, different target formats, and dif-
ferent losses and metrics; however, we will test the same
GNN architectures for both. The two applications will
both make use of the labeled dataset of 9 full NCAA Divi-
sion 1 Men’s Volleyball matches and one full professional
match from the corresponding 2020-2021 seasons made
using Volleyball Rally Expression Notation (VREN).

3.1 Underlying Data Representation

VREN defines a rally as a sequence of rounds with rally
level encoding information (winning team, winning rea-
son, losing reason). VREN defines a round as a set of 1-3
contacts (pass-set-hit) on one side of a net with a number
of attributes for each contact; a round ends and a new
round starts whenever the ball crosses the net or a block
occurs. VREN includes all the most vital information of
a volleyball rally according to volleyball experts.

3.2 Graph Representation for Rallies

In order to test the GNN approaches, we first processed
the dataset into a set of graphs. For rally outcome pre-
dictions, we separate each round into an individual graph.
Each of these graphs include 4 nodes: one for a pass (first
contact of round), one for a set (second contact of round),
one for a hit (third contact of round), and one for a block
touch (potential fourth legal contact per round by blockers
of the opposite team). Each of these nodes includes all the
VREN attributes for that given contact. Our graph struc-
ture only consists of edges between consecutive contacts
to offer a temporal encoding for the round. The target for
each round’s graph is O if team A (defined as the home
team by VREN) eventually loses that rally or 1 if team A
eventually wins that rally.

3.3 Graph Representation for Set Locations

For the set location predictions, the graphs and targets
are slightly different. Each round again is its own graph,
but the graph only contains information prior to the set
location such as the hitting and blocking contacts of the
previous rounds. Each of these graphs include 2 or 4
nodes depending on if there was a previous round of the
current rally: one for the previous round’s hit node (third
contact of previous round if exists), one for the previ-
ous round’s block node (potential fourth legal contact by
blockers of the opposite team of previous round if exists),
one for the current round’s pass (first contact of current
round), and one for the current round’s set (second contact
of current round). The set node for the current round in-
cludes only location encoding for where the setter will set
the ball from (pass landing location). It includes no other
attributes for that contact that would allow the model to
see into the future. All other nodes include all of the
VREN attributes for that given contact. Similar to the
rally prediction graphs, the graphs involve edges connect-
ing only consecutive contacts to give a type of temporal
encoding to the round information. The target for each
graph is an array of 9 elements corresponding to the 9 pos-
sible values for setting location defined by VREN. This
target array will be one-hot encoded to the true value of
the set location. To create these graphs and store these
two graphs datasets, we use pytorch-geometric.

3.4 GNN Models

Once the graph datasets are set up, we can then train and
test our models. For both applications, we use the same
three general GNN structures, all of which were made us-
ing pytorch and pytorch-geometric. First, we used a sim-
ple GCN with one graph Conv1D Layer, one graph global
pooling layer to get a graph level value, and one output
Linear Layer. Second, we used a slightly more complex
GCN model (LargeGCN) with one graph Conv1D Layer
and one graph global pooling layer again, but with 2 Lin-
ear Layers with 64 and 128 hidden neurons before the
output Linear Layer. Lastly, we created a Graph Trans-
former model with one graph TransformerConv Layer, a
global pooling layer, and one output Linear Layer. The
rally outcome models had a single float output with a sig-
moid activation function on the final output layer to yield
a probability value between 0 and 1; these models used
MSE as their loss function for training, and MSE, binary
accuracy, AUC, and Brier Score as metrics for validation
and testing. The set location models had an array of 9
values as an output with a softmax activation function on
the final output layer to yield probability predictions for
each set location that sum to 1; these models used the
cross-entropy loss function for training, and cross-entropy
loss and categorical accuracy as metrics for validation and
testing.



Table 1: Rally Outcome Prediction Performance: Baseline Models vs New GNN Models

Type of Approach Model Validation Game AUC Brier Score Binary Accuracy
CNN NCAA Game 0.746 0.210 0.678
. Professional Game 0.748 0.203 0.699
Baseline/NLP
Transformer NCAA Game 0.830 0.170 0.769
Professional Game 0.851 0.155 0.755
NCAA Game 0.780 0.219 0.707
Base GCN Professional Game  0.800  0.199 0.713
NCAA Game 0.785 0.225 0.714
GNN Large GCN Professional Game  0.807 0206 0.740
Graph Transformer NCAA Game 0.825 0.184 0.752
Professional Game 0.860 0.147 0.790

4 Experimental Results

Opverall, results for both experiments were positive. Rally
outcome prediction results can be seen in Table 1 and set
location prediction results can be seen in Table 2.

4.1 Rally Outcome Predictions

By using graph representations and GNNs, we were able
to see improvements over baseline NLP approaches. Both
GCN approaches seemed to have noticeably better AUC
scores and accuracies with around the same or slightly
worse Brier Scores as compared to baseline for both the
NCAA and Professional validation games. Overall it
would appear that the GCN approaches yielded better pre-
dictions than the baseline CNN approach. Further, Large
GCN performed slightly better than the smaller GCN for
AUC and accuracy, but slightly worse with BS for both
the NCAA and pro validation games. Thus, it appears
that adding a little more complexity to the model can
make a GCN perform slightly better overall in this case.
Lastly, the Graph Transformer model performed notice-
ably better than baseline for all metrics when looking at
the professional validation game, but slightly worse in
all metrics when looking at the NCAA validation game.
Overall it would appear that encoding the volleyball rally
information into graph structures yielded improvements
for predicting rally outcomes. Lastly, all 3 GNN models
saw better performance on the pro game than the NCAA
game for all metrics, exactly like the baseline approaches.

4.2 Set Location Predictions

For predicting set locations, GNNs and graph structures
yielded promising results, even though they may seem
poor at first glance. For predicting set location, 43-49%
(Table 2) accuracy is good since there are 9 possibilities
for set location in VREN. More importantly, it is almost
impossible to guess where a high level setter will set for
a large majority of situations, even for top professional
volleyball players. We see that smaller GCN did perform

Table 2: Categorical Accuracy for setting location predictions

Model Validation Game  Categorical accuracy%
GEN Prgfgsg?ngaglfme ?éé
Large GEN Prgeigéniaén:me :gé
Graph Transformer Pr(itecs?i[(?nfla([}njme :gi

slightly better than Large GCN on the NCAA validation
game and exactly the same on the pro validation game,
so it appears that simpler is better when it comes to the
GCN model structure. We can also see that the Graph
Transformer performs noticeably better than both GCNss,
as was expected.

5 Discussion

As shown in the analysis above, using GNN approaches
for volleyball rally prediction yielded clear overall im-
provements for both the NCAA and pro validation games.
Additionally, the GNN approaches worked well for pre-
dicting setter locations and offer a baseline for future
work.

5.1 Rally Outcome Predictions

The above results suggest that graph based approaches
can better model a volleyball rally than a pure NLP ap-
proach at least when using VREN as an underlying data
representation. This is likely because the graph structure
we used could specify the consecutive nature of the differ-
ent contacts in a round and add an encoding of grouped
attributes for certain contacts that the baseline NLP ap-
proach could not. This allowed the GNN to capture the
underlying distributions of a volleyball rally better. On
the other hand, the Graph Transformer model had more
situational improvements. The results showed that Graph
Transformer yielded a slight but noticeable improvement
on the pro validation game for all metrics over the baseline



Transformer model, but saw worse performance on all
metrics for the NCAA game. This suggests that a graph-
based encoding is able to analyze more information of the
underlying relationships in professional play that a base-
line Transformer model is unable to distinguish. Further,
it shows that this information may not be as significant in
NCAA play, or that it may be distinguished by the base
NLP Transformer model easier. The final takeaway from
the volleyball rally outcome prediction experiments is that
similar to the baseline approaches, each model saw better
performance for all metrics on the pro validation game
as compared to the NCAA validation game. This makes
sense because professional players are more disciplined
and skilled, so outcomes should be more deterministic
and predictable. Therefore, a well trained model should
be better able to understand and predict the relationships
in a pro game. This is also likely the reason behind Graph
Transformer not yielding improvements on the NCAA val-
idation game: more randomness in NCAA games could
lead to more difficulty for complex models to learn. The
complexity of the Graph Transformer’s input encoding
could actually be counterproductive when predicting the
NCAA games, but with more training epochs, better op-
timization, and more data, the Graph Transformer can
likely beat out the baseline Transformer model on NCAA
game performance as well.

5.2 Set Location Predictions

For our second set of experiments, we saw all 3 GNN
models have promising results. Base GCN performed
slightly better than Large GCN on the NCAA validation
game, but the same on the pro game. Further, Graph
Transformer performed better on both types of games.
Prior to running these experiments, we expected the mod-
els to struggle with predicting set locations; we expected
these models would not be able to perform better than a
random guess between the 5 most common values of set
location (20% accuracy) or to primarily guess the most
commonly occurring set (outside = 32% of all set location
values). Even an expert volleyball analyst or high-level
professional player would have trouble predicting the set
location in most situations, aside from rare cases where
the team’s passes are very poor. Good professional middle
blockers—the players that are the best at following sets
and getting in front of the ball before a hitter hits—almost
never guess the set location because of the difficult nature
of it; instead, they react to the trajectory of the set. Most
volleyball experts, analysts, and players would agree that
being able to correctly predict 43-49% of all sets in a vol-
leyball match is impressive, and certainly better than the
results that were expected. And even if the performances
are not as excellent as some might hope, this experiment
still provides a useful baseline for future comparison and
improvement.

5.3 Final Takeaways

Overall it would appear that graph-based approaches are
well suited for volleyball sports predictions and can beat
out NLP approaches. We would also like to mention that
our GNN models did not include any form of hyperpa-
rameter tuning and do not make use of any optimization
techniques, while the baseline NLP approaches do have
hyperparameter tuning, optimization, and early stopping
that boosted their performance significantly. With more
time and experimentation, as well as fully optimized GNN
models, we believe we will see even better results than
we currently have.

6 Future Work

In the future, we would like to expand upon this project
in several ways. First, we would like to optimize our
models by adding hyperparameter tuning, early stopping,
and more epochs of training. With these additions, we
will likely see more improvements to the point where
these GNN approaches would be clearly superior to base-
line approaches. Second, we would like to improve the
graph structures we have by including player locations
or other useful attributes (ie. starter or not) to give the
graphs more information to build its relationships with.
Another interesting avenue to explore would be predicting
hit types, predicting overall game outcomes, and creating
and analyzing graph embeddings for events and rallies.
Lastly, we could improve upon current work by gathering
more data across different leagues and levels of play to
further test the robustness of these models.
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